Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Viruses ; 15(5)2023 04 30.
Article in English | MEDLINE | ID: covidwho-20234187

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), believed to have originated from a bat species, can infect a wide range of non-human hosts. Bats are known to harbor hundreds of coronaviruses capable of spillover into human populations. Recent studies have shown a significant variation in the susceptibility among bat species to SARS-CoV-2 infection. We show that little brown bats (LBB) express angiotensin-converting enzyme 2 receptor and the transmembrane serine protease 2, which are accessible to and support SARS-CoV-2 binding. All-atom molecular dynamics (MD) simulations revealed that LBB ACE2 formed strong electrostatic interactions with the RBD similar to human and cat ACE2 proteins. In summary, LBBs, a widely distributed North American bat species, could be at risk of SARS-CoV-2 infection and potentially serve as a natural reservoir. Finally, our framework, combining in vitro and in silico methods, is a useful tool to assess the SARS-CoV-2 susceptibility of bats and other animal species.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
2.
Microbiol Resour Announc ; 12(6): e0012223, 2023 Jun 20.
Article in English | MEDLINE | ID: covidwho-2313696

ABSTRACT

We report a complete genome sequence of bovine coronavirus (BCoV) isolated from a goat in the state of Pennsylvania in 2022. BCoV often causes calf scours and winter dysentery in cattle.

3.
Viruses ; 14(12)2022 12 12.
Article in English | MEDLINE | ID: covidwho-2163616

ABSTRACT

There is mounting evidence of SARS-CoV-2 spillover from humans into many domestic, companion, and wild animal species. Research indicates that humans have infected white-tailed deer, and that deer-to-deer transmission has occurred, indicating that deer could be a wildlife reservoir and a source of novel SARS-CoV-2 variants. We examined the hypothesis that the Omicron variant is actively and asymptomatically infecting the free-ranging deer of New York City. Between December 2021 and February 2022, 155 deer on Staten Island, New York, were anesthetized and examined for gross abnormalities and illnesses. Paired nasopharyngeal swabs and blood samples were collected and analyzed for the presence of SARS-CoV-2 RNA and antibodies. Of 135 serum samples, 19 (14.1%) indicated SARS-CoV-2 exposure, and 11 reacted most strongly to the wild-type B.1 lineage. Of the 71 swabs, 8 were positive for SARS-CoV-2 RNA (4 Omicron and 4 Delta). Two of the animals had active infections and robust neutralizing antibodies, revealing evidence of reinfection or early seroconversion in deer. Variants of concern continue to circulate among and may reinfect US deer populations, and establish enzootic transmission cycles in the wild: this warrants a coordinated One Health response, to proactively surveil, identify, and curtail variants of concern before they can spill back into humans.


Subject(s)
COVID-19 , Deer , Humans , Animals , New York City/epidemiology , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/veterinary , Animals, Wild
4.
Sci Rep ; 12(1): 12094, 2022 07 15.
Article in English | MEDLINE | ID: covidwho-1937445

ABSTRACT

The emergence of a novel pathogen in a susceptible population can cause rapid spread of infection. High prevalence of SARS-CoV-2 infection in white-tailed deer (Odocoileus virginianus) has been reported in multiple locations, likely resulting from several human-to-deer spillover events followed by deer-to-deer transmission. Knowledge of the risk and direction of SARS-CoV-2 transmission between humans and potential reservoir hosts is essential for effective disease control and prioritisation of interventions. Using genomic data, we reconstruct the transmission history of SARS-CoV-2 in humans and deer, estimate the case finding rate and attempt to infer relative rates of transmission between species. We found no evidence of direct or indirect transmission from deer to human. However, with an estimated case finding rate of only 4.2%, spillback to humans cannot be ruled out. The extensive transmission of SARS-CoV-2 within deer populations and the large number of unsampled cases highlights the need for active surveillance at the human-animal interface.


Subject(s)
COVID-19 , Deer , SARS-CoV-2 , Viral Zoonoses , Animals , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19/veterinary , Deer/virology , Environmental Monitoring , Humans , Risk Assessment , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology
5.
Viruses ; 14(7)2022 06 22.
Article in English | MEDLINE | ID: covidwho-1911645

ABSTRACT

Multiple domestic and wild animal species are susceptible to SARS-CoV-2 infection. Cattle and swine are susceptible to experimental SARS-CoV-2 infection. The unchecked transmission of SARS-CoV-2 in animal hosts could lead to virus adaptation and the emergence of novel variants. In addition, the spillover and subsequent adaptation of SARS-CoV-2 in livestock could significantly impact food security as well as animal and public health. Therefore, it is essential to monitor livestock species for SARS-CoV-2 spillover. We developed and optimized species-specific indirect ELISAs (iELISAs) to detect anti-SARS-CoV-2 antibodies in cattle, swine, and chickens using the spike protein receptor-binding domain (RBD) antigen. Serum samples collected prior to the COVID-19 pandemic were used to determine the cut-off threshold. RBD hyperimmunized sera from cattle (n = 3), swine (n = 6), and chicken (n = 3) were used as the positive controls. The iELISAs were evaluated compared to a live virus neutralization test using cattle (n = 150), swine (n = 150), and chicken (n = 150) serum samples collected during the COVID-19 pandemic. The iELISAs for cattle, swine, and chicken were found to have 100% sensitivity and specificity. These tools facilitate the surveillance that is necessary to quickly identify spillovers into the three most important agricultural species worldwide.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19/diagnosis , COVID-19/veterinary , Cattle , Chickens , Enzyme-Linked Immunosorbent Assay , Humans , Pandemics/prevention & control , Spike Glycoprotein, Coronavirus , Swine
6.
Viruses ; 14(5)2022 04 30.
Article in English | MEDLINE | ID: covidwho-1869803

ABSTRACT

From 29 November to 1 December 2021, an "emerging animal infectious disease conference (EAIDC)" was held at the Pennsylvania State University. This conference brought together distinguished thought leaders in animal health, veterinary diagnostics, epidemiology and disease surveillance, and agricultural economics. The conference's primary objective was to review the lessons learned from past experiences in dealing with high-consequence animal infectious diseases to inform an action plan to prepare for future epizootics and panzootics. Invited speakers and panel members comprised world-leading experts in animal infectious diseases from federal state agencies, academia, professional societies, and the private sector. The conference concluded that the biosecurity of livestock operations is critical for minimizing the devastating impact of emerging animal infectious diseases. The panel also highlighted the need to develop and benchmark cutting-edge diagnostics for rapidly detecting pathogens in clinical samples and the environment. Developing next-generation pathogen agnostic diagnostics will help detect variants of known pathogens and unknown novel pathogens. The conference also highlighted the importance of the One Health approach in dealing with emerging animal and human infectious diseases. The recommendations of the conference may be used to inform policy discussions focused on developing strategies for monitoring and preventing emerging infectious disease threats to the livestock industry.


Subject(s)
Communicable Diseases, Emerging , Communicable Diseases , Agriculture , Animals , Communicable Diseases/diagnosis , Communicable Diseases/epidemiology , Communicable Diseases/veterinary , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/veterinary , Humans
7.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: covidwho-1655775

ABSTRACT

Many animal species are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and could act as reservoirs; however, transmission in free-living animals has not been documented. White-tailed deer, the predominant cervid in North America, are susceptible to SARS-CoV-2 infection, and experimentally infected fawns can transmit the virus. To test the hypothesis that SARS-CoV-2 is circulating in deer, 283 retropharyngeal lymph node (RPLN) samples collected from 151 free-living and 132 captive deer in Iowa from April 2020 through January of 2021 were assayed for the presence of SARS-CoV-2 RNA. Ninety-four of the 283 (33.2%) deer samples were positive for SARS-CoV-2 RNA as assessed by RT-PCR. Notably, following the November 2020 peak of human cases in Iowa, and coinciding with the onset of winter and the peak deer hunting season, SARS-CoV-2 RNA was detected in 80 of 97 (82.5%) RPLN samples collected over a 7-wk period. Whole genome sequencing of all 94 positive RPLN samples identified 12 SARS-CoV-2 lineages, with B.1.2 (n = 51; 54.5%) and B.1.311 (n = 19; 20%) accounting for ∼75% of all samples. The geographic distribution and nesting of clusters of deer and human lineages strongly suggest multiple human-to-deer transmission events followed by subsequent deer-to-deer spread. These discoveries have important implications for the long-term persistence of the SARS-CoV-2 pandemic. Our findings highlight an urgent need for a robust and proactive "One Health" approach to obtain enhanced understanding of the ecology, molecular evolution, and dissemination of SARS-CoV-2.


Subject(s)
COVID-19/transmission , Deer/virology , SARS-CoV-2/isolation & purification , Zoonoses/virology , Animals , COVID-19/virology , Disease Reservoirs/virology , Humans , SARS-CoV-2/genetics
8.
Sci Adv ; 7(49): eabj1476, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1546429

ABSTRACT

The COVID-19 pandemic has spurred interest in potent and thermostable SARS-CoV-2 vaccines. Here, we assess low-dose immunization with lyophilized nanoparticles decorated with recombinant SARS-CoV-2 antigens. The SARS-CoV-2 Spike glycoprotein or its receptor-binding domain (RBD; mouse vaccine dose, 0.1 µg) was displayed on liposomes incorporating a particle-inducing lipid, cobalt porphyrin-phospholipid (dose, 0.4 µg), along with monophosphoryl lipid A (dose, 0.16 µg) and QS-21 (dose, 0.16 µg). Following optimization of lyophilization conditions, Spike or RBD-decorated liposomes were effectively reconstituted and maintained conformational capacity for binding human angiotensin-converting enzyme 2 (hACE2) for at least a week when stored at 60°C in lyophilized but not liquid format. Prime-boost intramuscular vaccination of hACE2-transgenic mice with the reconstituted vaccine formulations induced effective antibody responses that inhibited RBD binding to hACE2 and neutralized pseudotyped and live SARS-CoV-2. Two days following viral challenge, immunized transgenic mice cleared the virus and were fully protected from lethal disease.

9.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Article in English | MEDLINE | ID: covidwho-1442868

ABSTRACT

The association of the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with human angiotensin-converting enzyme 2 (hACE2) represents the first required step for cellular entry. SARS-CoV-2 has continued to evolve with the emergence of several novel variants, and amino acid changes in the RBD have been implicated with increased fitness and potential for immune evasion. Reliably predicting the effect of amino acid changes on the ability of the RBD to interact more strongly with the hACE2 can help assess the implications for public health and the potential for spillover and adaptation into other animals. Here, we introduce a two-step framework that first relies on 48 independent 4-ns molecular dynamics (MD) trajectories of RBD-hACE2 variants to collect binding energy terms decomposed into Coulombic, covalent, van der Waals, lipophilic, generalized Born solvation, hydrogen bonding, π-π packing, and self-contact correction terms. The second step implements a neural network to classify and quantitatively predict binding affinity changes using the decomposed energy terms as descriptors. The computational base achieves a validation accuracy of 82.8% for classifying single-amino acid substitution variants of the RBD as worsening or improving binding affinity for hACE2 and a correlation coefficient of 0.73 between predicted and experimentally calculated changes in binding affinities. Both metrics are calculated using a fivefold cross-validation test. Our method thus sets up a framework for screening binding affinity changes caused by unknown single- and multiple-amino acid changes offering a valuable tool to predict host adaptation of SARS-CoV-2 variants toward tighter hACE2 binding.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Host-Pathogen Interactions/genetics , Neural Networks, Computer , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Binding Sites/genetics , Humans , Molecular Dynamics Simulation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
10.
Viruses ; 13(10)2021 09 22.
Article in English | MEDLINE | ID: covidwho-1438738

ABSTRACT

Antibodies targeting the spike (S) and nucleocapsid (N) proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are essential tools. In addition to important roles in the treatment and diagnosis of infection, the availability of high-quality specific antibodies for the S and N proteins is essential to facilitate basic research of virus replication and in the characterization of mutations responsible for variants of concern. We have developed panels of mouse and rabbit monoclonal antibodies (mAbs) to the SARS-CoV-2 spike receptor-binding domain (S-RBD) and N protein for functional and antigenic analyses. The mAbs to the S-RBD were tested for neutralization of native SARS-CoV-2, with several exhibiting neutralizing activity. The panels of mAbs to the N protein were assessed for cross-reactivity with the SARS-CoV and Middle East respiratory syndrome (MERS)-CoV N proteins and could be subdivided into sets that showed unique specificity for SARS-CoV-2 N protein, cross-reactivity between SARS-CoV-2 and SARS-CoV N proteins only, or cross-reactivity to all three coronavirus N proteins tested. Partial mapping of N-reactive mAbs were conducted using truncated fragments of the SARS-CoV-2 N protein and revealed near complete coverage of the N protein. Collectively, these sets of mouse and rabbit monoclonal antibodies can be used to examine structure/function studies for N proteins and to define the surface location of virus neutralizing epitopes on the RBD of the S protein.


Subject(s)
Betacoronavirus/immunology , Coronavirus Nucleocapsid Proteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites/immunology , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Cross Reactions , Epitopes/metabolism , Humans , Mice , Neutralization Tests , Phosphoproteins/immunology , Phosphoproteins/metabolism , Protein Binding/immunology , Rabbits , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism
11.
Commun Biol ; 4(1): 267, 2021 02 24.
Article in English | MEDLINE | ID: covidwho-1101684

ABSTRACT

Millions of individuals who have recovered from SARS-CoV-2 infection may be eligible to participate in convalescent plasma donor programs, yet the optimal window for donating high neutralizing titer convalescent plasma for COVID-19 immunotherapy remains unknown. Here we studied the response trajectories of antibodies directed to the SARS-CoV-2 surface spike glycoprotein and in vitro SARS-CoV-2 live virus neutralizing titers (VN) in 175 convalescent donors longitudinally sampled for up to 142 days post onset of symptoms (DPO). We observed robust IgM, IgG, and viral neutralization responses to SARS-CoV-2 that persist, in the aggregate, for at least 100 DPO. However, there is a notable decline in VN titers ≥160 for convalescent plasma therapy, starting 60 DPO. The results also show that individuals 30 years of age or younger have significantly lower VN, IgG and IgM antibody titers than those in the older age groups; and individuals with greater disease severity also have significantly higher IgM and IgG antibody titers. Taken together, these findings define the optimal window for donating convalescent plasma useful for immunotherapy of COVID-19 patients and reveal important predictors of an ideal plasma donor.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Blood Donors , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Age Factors , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/therapy , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Longitudinal Studies , Male , Middle Aged , Severity of Illness Index , Time Factors , Young Adult
12.
Advanced Materials ; 32(50):2070373, 2020.
Article in English | Wiley | ID: covidwho-976957

ABSTRACT

In article number 2005637, Jonathan F. Lovell and co-workers show that the SARS-CoV-2 RBD surface protein becomes a potent immunogen when presented in nanoparticle format. Using a vaccine adjuvant that spontaneously converts soluble recombinant antigens into stable particles, immunization studies in mice and rabbits shows that the particle-based RBD elicits strong immune responses and potent antibodies capable of neutralizing the virus.

13.
J Clin Invest ; 130(12): 6728-6738, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-972513

ABSTRACT

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) highlights the urgent need for assays that detect protective levels of neutralizing antibodies. We studied the relationship among anti-spike ectodomain (anti-ECD), anti-receptor-binding domain (anti-RBD) IgG titers, and SARS-CoV-2 virus neutralization (VN) titers generated by 2 in vitro assays using convalescent plasma samples from 68 patients with COVID-19. We report a strong positive correlation between both plasma anti-RBD and anti-ECD IgG titers and in vitro VN titers. The probability of a VN titer of ≥160, the FDA-recommended level for convalescent plasma used for COVID-19 treatment, was ≥80% when anti-RBD or anti-ECD titers were ≥1:1350. Of all donors, 37% lacked VN titers of ≥160. Dyspnea, hospitalization, and disease severity were significantly associated with higher VN titer. Frequent donation of convalescent plasma did not significantly decrease VN or IgG titers. Analysis of 2814 asymptomatic adults found 73 individuals with anti-ECD IgG titers of ≥1:50 and strong positive correlation with anti-RBD and VN titers. Fourteen of these individuals had VN titers of ≥1:160, and all of them had anti-RBD titers of ≥1:1350. We conclude that anti-RBD or anti-ECD IgG titers can serve as a surrogate for VN titers to identify suitable plasma donors. Plasma anti-RBD or anti-ECD titers of ≥1:1350 may provide critical information about protection against COVID-19 disease.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Immunoglobulin G , SARS-CoV-2 , Adolescent , Adult , Aged , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Viral/administration & dosage , Antibodies, Viral/blood , Female , Humans , Immunization, Passive , Immunoglobulin G/administration & dosage , Immunoglobulin G/blood , Male , Middle Aged , COVID-19 Serotherapy
14.
Adv Mater ; 32(50): e2005637, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-893198

ABSTRACT

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a candidate vaccine antigen that binds angiotensin-converting enzyme 2 (ACE2), leading to virus entry. Here, it is shown that rapid conversion of recombinant RBD into particulate form via admixing with liposomes containing cobalt-porphyrin-phospholipid (CoPoP) potently enhances the functional antibody response. Antigen binding via His-tag insertion into the CoPoP bilayer results in a serum-stable and conformationally intact display of the RBD on the liposome surface. Compared to other vaccine formulations, immunization using CoPoP liposomes admixed with recombinant RBD induces multiple orders of magnitude higher levels of antibody titers in mice that neutralize pseudovirus cell entry, block RBD interaction with ACE2, and inhibit live virus replication. Enhanced immunogenicity can be accounted for by greater RBD uptake into antigen-presenting cells in particulate form and improved immune cell infiltration in draining lymph nodes. QS-21 inclusion in the liposomes results in an enhanced antigen-specific polyfunctional T cell response. In mice, high dose immunization results in minimal local reactogenicity, is well-tolerated, and does not elevate serum cobalt levels. Taken together, these results confirm that particulate presentation strategies for the RBD immunogen should be considered for inducing strongly neutralizing antibody responses against SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/immunology , Animals , Binding Sites , COVID-19/immunology , Female , HEK293 Cells , Humans , Immunogenicity, Vaccine/immunology , Mice , Pandemics/prevention & control , Rabbits , Vaccination , Virus Replication/drug effects
15.
Virology ; 551: 10-15, 2020 12.
Article in English | MEDLINE | ID: covidwho-796700

ABSTRACT

Bovine respiratory disease (BRD) is the costliest disease affecting the cattle industry globally. Orthomyxoviruses, influenza C virus (ICV) and influenza D virus (IDV) have recently been implicated to play a role in BRD. However, there are contradicting reports about the association of IDV and ICV to BRD. Using the largest cohort study (cattle, n = 599) to date we investigated the association of influenza viruses in cattle with BRD. Cattle were scored for respiratory symptoms and pooled nasal and pharyngeal swabs were tested for bovine viral diarrhea virus, bovine herpesvirus 1, bovine respiratory syncytial virus, bovine coronavirus, ICV and IDV by real-time PCR. Cattle that have higher viral loads of IDV and ICV also have greater numbers of co-infecting viruses than controls. More strikingly, 2 logs higher IDV viral RNA in BRD-symptomatic cattle that are co-infected animals than those infected with IDV alone. Our results strongly suggest that ICV and IDV may be significant contributors to BRD.


Subject(s)
Bovine Respiratory Disease Complex/virology , Influenzavirus C/pathogenicity , Orthomyxoviridae Infections/veterinary , Thogotovirus/pathogenicity , Viral Load/veterinary , Animals , Bovine Respiratory Disease Complex/epidemiology , Cattle , Coinfection/epidemiology , Coinfection/veterinary , Coinfection/virology , Female , Influenzavirus C/isolation & purification , Livestock , Male , Odds Ratio , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/virology , Prevalence , RNA, Viral/analysis , Thogotovirus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL